A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models
نویسندگان
چکیده
Marketing variables included in consumer discrete choice models are often endogenous. Extant treatments using likelihood-based estimators impose parametric distributional assumptions such as normality, on the source of endogeneity. These assumptions are restrictive as misspecified distributions have an impact on parameter estimates and associated elasticities. The normality assumption for endogeneity can be inconsistent with some marginal cost specifications given a price setting process, although being consistent with other specifications. In this paper we propose a heterogeneous Bayesian semiparametric approach for modeling choice endogeneity which offers a flexible and robust alternative to parametric methods. Specifically, we construct centered Dirichlet process mixtures (CDPM) to allow uncertainty over the distribution of endogeneity errors. In a similar vein, we also model consumer preference heterogeneity non-parametrically via a CDPM. Results on simulated data show that incorrect distributional assumptions can lead to poor recovery of model parameters and price elasticities, whereas, the proposed semiparametric model is able to robustly recover the true parameters in an efficient fashion. In addition, the CDPM offers the benefits of automatically inferring the number of mixture components that are appropriate for a given data set and is able to reconstruct the shape of the underlying distributions for endogeneity and heterogeneity errors. We apply our approach to two scanner panel data sets. Model comparison statistics indicate the superiority of the semiparametric specification and the results show that parameter and elasticity estimates are sensitive to the choice of distributional forms. Moreover, the CDPM specification yields evidence of multimodality, skewness, and outlying observations in these real data sets.
منابع مشابه
Binary Response Correlated Random Coefficient Panel Data Models
In this paper, we consider binary response correlated random coefficient (CRC) panel data models which are frequently used in the analysis of treatment effects and demand of products. We focus on the nonparametric identification and estimation of panel data models under unobserved heterogeneity which is captured by random coefficients and when these random coefficients are correlated with regre...
متن کاملSubjective Health Assessments and Active Labor Market Participation of Older Men: Evidence from a Semiparametric Binary Choice Model with Nonadditive Correlated Individual-specific Effects
Subjective Health Assessments and Active Labor Market Participation of Older Men: Evidence from a Semiparametric Binary Choice Model with Nonadditive Correlated Individual-Specific Effects We use panel data from the US Health and Retirement Study 1992-2002 to estimate the effect of self-assessed health limitations on active labor market participation of men around retirement age. Self-assessmen...
متن کاملSemiparametric Bayesian Inference for Dynamic Tobit Panel Data Models with Unobserved Heterogeneity
This paper develops semiparametric Bayesian methods for inference of dynamic Tobit panel data models. Our approach only requires to specify the conditional mean dependence of the unobserved heterogeneity on the initial conditions and the strictly exogenous variables; no further distributional assumption on the unobserved heterogeneity is needed. Important quantities of economic interest such as...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملOn Theoretical and Empirical Aspects of Marginal Distribution Choice Models
In this paper, we study the properties of a recently proposed class of semiparametric discrete choice models (referred to as the Marginal Distribution Model), by optimizing over a family of joint error distributions with prescribed marginal distributions. Surprisingly, the choice probabilities arising from the family of Generalized Extreme Value models can be obtained from this approach, despit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Management Science
دوره 60 شماره
صفحات -
تاریخ انتشار 2014